

СИСТЕМА 3D ЛАЗЕРНОГО СКАНИРОВАНИЯ

Серия ШТРИХ-2

Руководство по эксплуатации

Логойский тракт, 22, г. Минск 220090, Республика Беларусь тел/факс: +375 17 281 35 13 info@riftek.com www.riftek.com

Содержание

1. Меры предосторожности.	3				
1.1. Условные обозначения, используемые в документе					
2. Электромагнитная совместимость	3				
3 Пазерная безопасность					
4 Назначение	4				
	۰ ۵				
	+۲ ۸				
	++ ۸				
	+4 ۸				
6.2. Допустимые спосооб синхронизации.	4				
6.3. Динамические характеристики входного сигнала STEP	5				
6.4. Лазерные датчики РФ603 и РФ603В	5				
6.5. Блок синхронизации	7				
6.5.1. Назначение контактов и индикаторов блока синхронизации	8				
6.6. Блок оптической развязки	8				
6.6.1. Назначение контактов блока оптической развязки	9				
7. Принцип работы системы сканирования	10				
8. Варианты подключения	11				
8.1. Подключение стандартного датчика	11				
8.1.1. Подключение к станкам с прямым управлением шаговым двигателем	11				
8.1.2. Подключение к станкам Beaver 9A/12A/12AV/18A/24A/26A	11				
8.1.3 Полкпючение к станкам с импульсными сигналами энколера					
8.1.4. Полключение к станкам импульсными сигналами управления, либо с энколером с					
лифференциальным выходом (например, Beaver 26AVST с серво-контроплером)	12				
815 Полключение к станкам с синусоилальными сисналами энколера (3 провода)	12				
816 Полключение к станкам с синусоидальными и лифференциальными сисналами энколе	na (5				
	pu (o				
	13				
	13 1/1				
	+ ۱ 1/1				
	+۱ 1 <i>۱</i>				
	+۱۱۰ ۱۶				
9.2.1. Подключение к станку с прямым управлением шаговым приводом	10 15				
9.2.2. Подключение к станку с импульсным сигналом энкодера	10				
9.2.3. Подключение к станкам с импульсными дифф. сигналами энкодера, (RS422)	10				
9.2.4. Подключение к станкам с аналоговыми сигналами энкодера	10				
9.2.5. Подключение к станкам с аналотовыми дифференциальными сигналами энкодера	10				
9.3. Подключение к олоку синхронизации	1/				
10. Программное обеспечение "Ashera"					
10.1. Основные функции	1/				
10.2. Запуск программы	1/				
10.3. Настройки	18				
10.3.1. Настройка датчика	18				
10.3.2. Настройка параметров лазерного датчика	19				
10.3.3. Настройка программных фильтров	19				
10.3.4. Настройка параметров сканирования	19				
10.4. Формирование файла сканирования для ЧПУ	20				
10.5. Сканирование объекта	20				
10.6. Формирование файла результата	20				
11. Сканирование тел вращения	21				
12. Примеры работы фильтра	22				
13. Пример обозначения при заказе	23				
14. Системные требования	24				
15. Гарантия	24				
16. Устранение проблем	25				
17. Руководство по подключению	25				
17.1. Общие положения	25				
17.2. Входные цепи блоков синхронизации и опто-развязки					
17.3. Полкпючение к системам с шаговыми двигателями					
17.3.1 Поключение к дайверам Leadshine M542/YAKO YKR2608 и аналогичным	20 26				
17.3.2 Полкпючение к системам с серволвигателями	20 12				
	זר גר				
18 Плимелы сканирования	30 مرح				
10. Г. Оравнение стандартного и оинокулярного датчиков	ວວ ລະ				
19. Олыны каралынан. 20. Испозранинан поберанина	00 ۱۸				
20. исправления и дооавления	40				

1. Меры предосторожности.

- При подсоединении/отсоединении кабелей питание должно быть отключено.
- Не используйте систему вблизи мощных источников света.
- Для получения стабильных результатов после включения питания необходимо выдержать порядка 20 минут для равномерного прогрева датчика.
- Избегайте попадания металлической стружки в блок оптической развязки.
- Проверяйте заземление станка перед подключением системы к станку.

1.1. Условные обозначения, используемые в документе

Символ «Внимание»: Следует обратить внимание на предостережение, чтобы избежать типичных ошибок при работе с 3D системой.

Символ «Информация»: Информация, которая может быть полезна.

2. Электромагнитная совместимость

Система разработана для использования в промышленности и соответствует следующим стандартам:

- EN 55022:2006 Оборудование информационных технологий. Характеристики радиопомех. Пределы и методы измерений.
- EN 61000-6-2:2005 Электромагнитная совместимость. Общие стандарты. Помехоустойчивость к промышленной окружающей среде.
- EN 61326-1:2006 Электрооборудование для измерения, управления и лабораторного использования. Требования к электромагнитной совместимости. Общие требования

3. Лазерная безопасность

Лазерный датчик, используемый в системе, соответствует классу 2 лазерной безопасности по IEC 60825-1:2007

В датчике установлен полупроводниковый лазер с непрерывным излучением и длиной волны 660 нм. Максимальная выходная мощность 1 мВт. На корпусе датчика размещена предупреждающая этикетка:

При работе с датчиком необходимо соблюдать следующие меры безопасности:

• не направляйте лазерный луч на людей;

- не разбирайте датчик;
- не смотрите в лазерный луч.

4. Назначение

Система "Штрих-2" предназначена для бесконтактного лазерного сканирования изделий с целью получения объемной компьютерной модели и формирования файлов модели, пригодных для дальнейшего использования в системе ЧПУ. Система разработана для установки на обрабатывающие станки с любым типом управления.

5. Комплектность поставки

Наименование	Кол-во	РФ071-D0-О0	РФ071-D0-O1	РФ071-D1-O0	РФ071-D1-O1
Триангуляционный лазерный датчик	1	•	•	х	х
Бинокулярный триангуляци- онный лазерный датчик	1	х	х	•	•
Кронштейн для установки датчика на станок	1	•	•	•	•
Блок синхронизации с USB- кабелем для подключения к ПК	1	•	•	•	•
Сетевой Switch/Hub	1	х	х	•	•
Кабель к блоку синхрониза- ции	1	•	•	•	•
Источник питания	1	•	•	•	•
Винт	2	•	•	•	•
Блок оптической развязки	1	Х	•	Х	•
Кабель к блоку оптической развязки	1	х	•	х	•
Компакт диск с драйверами, программным обеспечением и руководством	1	•	•	•	•
Паспорт на лазерный датчик	1	•	•	•	•
Упаковочный лист	1	•	•	•	•

• - стандартная комплектация; х - в комплект поставки не входит. Пример заказа - п. 13

6. Основные технические данные

6.1. Параметры сканирования

Наименование	Значение
Сканируемые материалы	любые *
Сетка сканирования по ХҮ	произвольная
Поле сканирования по ХҮ	произвольное
Глубина сканирования, мм	100 или по заказу**
Средняя скорость сканирования, точек/с	4500

*при сканирования прозрачных и зеркальных материалов нанести на поверхность специальный спрэй для лазерного сканирования, **глубина сканирования определяется рабочим диапазоном лазерного датчика (см. п. <u>6.4.</u>).

Возможно оснащение системы датчиком с другим рабочим диапазоном (см. <u>www.riftek.com/pages/laser.htm</u>).

6.2. Допустимые способы синхронизации

Значение уровня сигнала

Сигналы прямого управления шаговым приводом оси	CMOS/TTL
X	
Энкодер на оси Х с импульсным выходом (дифферен-	130V
циальным или недифференциальным)	
Энкодер на оси Х с синусоидальным выходом (диф-	130V
ференциальным или недифференциальным)	

6.3. Динамические характеристики входного сигнала STEP

Сигнал	Параметр	Символ	Условие	Мин.	Норм.	Макс.
T _{fp} ←→	Период сигнала STEP, мкс	Tfp	Токр=25°С	125	222	-
♥_ ♥ _ ♥→ _ T _I	Время активного уровня сигнала STEP, мкс	Ti	Токр=25°С	10	25	-

ВНИМАНИЕ!

В случае использовании программ **Mach3** и подобных будьте внимательны при настройке длительности импульса STEP, он должен быть не короче времени Ti, указанного в таблице.

6.4. Лазерные датчики РФ603 и РФ603В

Параметр	Значение
Базовое расстояние, мм	140*
Рабочий диапазон, мм	100*
Суммарная высота от стола станка, мм	240*
Погрешность, мм	±0,1*
Разрешение, мм	0,01*
Максимальное быстродействие, точек/сек	9400
Тип лазера	1 мВт, длина волны 660 нм
Класс защиты	IP67
Рабочая температура, °С	-10+60
Время непрерывной работы	неограниченно
Габаритные и установочные размеры, мм	РФ603 - рис.3, РФ603В – рис.4
Вес, г	РФ603 – 100, РФ603В - 220

*возможно оснащение системы лазерным датчиком с другим рабочим диапазоном и базовым расстоянием (см. <u>www.riftek.com/pages/laser.htm</u>)

()

Информация!

Погрешность и разрешающая способность лазерных датчиков прямо пропорциональны рабочему диапазону датчика, поэтому для сканирования с максимальной точностью выбирайте датчик с рабочим диапазоном, сравнимым с высотой сканируемых изделий.

Информация!

Использование бинокулярного датчика РФ603В позволяет существенно улучшить качество сканирования, особенно изделий с глубоким рельефом. В отличие от стандартного датчика бинокулярный содержит два входных окна, расположенных симметрично по отношению к лазерному лучу, что гарантирует сканирование областей, не-

Рисунок 3

6.5. Блок синхронизации

Параметер	Значение
Интерфейс связи с ПК	USB 2.0
Класс защиты	IP67
Рабочая температура, °С	-10+60
Габариты, мм	Рис.5

6.5.1. Назначение контактов и индикаторов блока синхронизации

N⁰		Назначение				
1	Разъём для подключения к станку в случае установки на станки Beaver					
I	9A/12A/12AV/1	9A/12A/12AV/18A/24A/26A, иначе не используется;				
2	Разъём для по	одключения лазерного датчика;				
3	Разъём для подключения источника питания +5В;					
7	Разъём для подключения к блоку оптической развязки (при установке на стан-					
4	ки Beaver 9A/12A/12AV/18A/24A/26A – 15ти жильный кабель к ПК);					
5	USB-кабель для подключения системы к ПК.					
6		Наличие питания +5В				
7	Conduction	Наличие питания +15В				
8	Сервисные	Активность линии RX интерфейса RS485				
9	светодиоды	Состояние линии STEP				
10		Состояние линии DIR				

ВНИМАНИЕ!

Датчик и блок синхронизации должен быть заземлёны! (Объединены с землей станка)

6.6. Блок оптической развязки

Параметр	Значение
Класс защиты	IP64
Рабочая температура, °С	-10+60
Габариты, мм	Рис. 6
Назначение контактов	Рис. 7
Установка	на DIN-рейку

6.6.1. Назначение контактов блока оптической развязки

Название контакта	Тип	Назначение
+5Vout	Вход	Не используется
xSTEP+	Вход	Настраиваемый положительный вход шагов,
		либо сигнала А+ энкодера
xSTEP-	Вход	Настраиваемый отрицательный вход шагов,
		либо сигнала А- энкодера
xDIR+	Вход	Настраиваемый положительный вход шагов,
		либо сигнала В+ энкодера
xDIR-	Вход	Настраиваемый отрицательный вход шагов,
		либо сигнала В- энкодера
AGND	Вход	Земля, относительно которой работают входы xSTEP+/- xDIR+/-
+5V	Выход	Питание входной части блока синхронизации
STEP	Выход	Сигнал шагов для блока синхронизации
DIR	Выход	Сигнал направления для блока синхронизации
GND	Выход	Земля для блока синхронизации

6.6.2. Подключение к блоку синхронизации

Блок оптической развязки поставляется с кабелем с 15-ти контактный разъёмом для подключения к блоку синхронизации, четыре подготовленных провода на другом конце предназначены для подключения к блоку оптической развязки. Назначение проводников ("КАБЕЛЬ-001-15") указано в таблице:

Клемма на блоке оптической развязки	Цвет провода	Назначение
+5V	Красный	Питание входной части блока синхронизации
STEP	Синий	Сигнал шагов для блока синхронизации
DIR	Белый	Сигнал направления для блока синхронизации
GND	Коричневый	Земля для блока синхронизации

7. Принцип работы системы сканирования

Лазерный датчик устанавливается на систему перемещения станка. В режиме сканирования система ЧПУ станка построчно (змейкой) перемещает датчик над прототипом изделия. Датчик измеряет расстояние (координата Z) до поверхности изделия. Съем данных с датчика синхронизируется с его перемещением (координаты XY), и результат через USB-порт (для датчика РФ603) или через Ethernet порт (для датчика РФ603В) передается в ПК. Таким образом, формируется массив координат XYZ поверхности, т.е. оцифрованная модель прототипа, которая сохраняется в виде файла облака точек, а также в общепринятом формате STL, пригодном для дальнейшего использования в ЧПУ.

8. Варианты подключения

8.1. Подключение стандартного датчика

8.1.1. Подключение к станкам с прямым управлением шаговым двигателем.

8.1.2. Подключение к станкам Beaver 9A/12A/12AV/18A/24A/26A

8.1.3. Подключение к станкам с импульсными сигналами энкодера

RIETE

Ð

8.1.4. Подключение к станкам импульсными сигналами управления, либо с энкодером с дифференциальным выходом (например, Beaver 26AVST с серво-контроллером).

8.1.5. Подключение к станкам с синусоидальными сигналами энкодера (3 провода)

8.1.6. Подключение к станкам с синусоидальными и дифференциальными сигналами энкодера (5 проводов)

8.2. Подключение системы с бинокулярным лазерным датчиком

Подключение системы к станку аналогично подключению, описанному в п.<u>8.1.</u>, за исключением способа подключения лазерного датчика к ПК. Передача данных от стандартного датчика производится через блок синхронизации и USB порт ПК, от бинокулярного датчика – через Ethernet-порт

9. Подключение блока оптической развязки

9.1. Структурная схема

Для декодирования входных сигналов и преобразования их в принятые для лазерного датчика уровни блок содержит "Входные формирователи". В зависимости от положения "Переключателей режима работы" выбирается один из режимов работы "Входных формирователей".

Входной декодер (CPLD) поддерживает следующие сигналы синхронизации с различных источников, таких как:

- CMOS/TTL сигналы управления шаговым приводом оси Х;
- энкодер на оси X с импульсным выходом;
- энкодер на оси X с синусоидальным выходом;
- энкодер на оси Х с дифференциальный импульсным выходом;
- энкодер на оси Х с дифференциальный синусоидальным выходом.

Блок оптической развязки формирует сигналы STEP и DIR для блока синхронизации.

ИНФОРМАЦИЯ

Использование CPLD (микросхема с программируемой логикой) даёт возможность декодировать практически любые входные сигналы и формировать на выходе сигналы синхронизации для лазерного датчика.

9.2. Выбор варианта синхронизации

Выбор варианта синхронизации осуществляется посредством микропереключателей, расположенных в блоке оптической развязки.

ВНИМАНИЕ!

При заказе системы 3D сканирования "Штрих-2" на конкретный станок, блок оптической развязки поставляется с заранее настроенными микропереключателями.

9.2.1. Подключение к станку с прямым управлением шаговым приводом

Для декодирования указанных сигналов микропереключатели блока оптической развязки должны быть переведены в положение, показанное на рисунке:

9.2.2. Подключение к станку с импульсным сигналом энкодера Диаграмма сигналов управления:

Для декодирования указанных сигналов микропереключатели блока оптической развязки должны быть переведены в положение, показанное на рисунке:

9.2.3. Подключение к станкам с импульсными дифф. сигналами энкодера, (RS422)

Для декодирования указанных сигналов микропереключатели блока оптической развязки должны быть переведены в положение, показанное на рисунке:

9.2.4. Подключение к станкам с аналоговыми сигналами энкодера Диаграмма сигналов управления

Для декодирования указанных сигналов микропереключатели блока оптической развязки должны быть переведены в положение, показанное на рисунке:

9.2.5. Подключение к станкам с аналоговыми дифференциальными сигналами энкодера

Диаграмма сигналов управления

Для декодирования указанных сигналов микропереключатели блока оптической развязки должны быть переведены в положение, показанное на рисунке:

9.3. Подключение к блоку синхронизации

Блок оптической развязки поставляется с кабелем, 15-ти контактный разъёмом на одном конце которого подключается к блоку синхронизации, а четыре подготовленных провода на другом конце - к блоку оптической развязки. Назначение проводников указано в таблице:

Цвет провода	Назначение	Клемма на блоке оптической
		развязки
Красный	Питание входной части блока синхронизации	+5V
Синий	Сигнал шагов для блока синхронизации	STEP
Белый	Сигнал направления блока синхронизации	DIR
Коричневый	Земля для блока синхронизации	GND

10. Программное обеспечение "Ashera"

10.1. Основные функции

Программное обеспечение предназначено для:

- формирования файла построчного сканирования для системы ЧПУ (G-коды), включая задание размера области сканирования, задание шага дискретизации по координатам X и Y и скорости сканирования;
- параметризации лазерного датчика, в том числе настройки сглаживающего фильтра и фильтрации ошибок измерения;
- приема данных с лазерного датчика;
- визуализации данных;
- фильтрации и сглаживания результатов;
- формирования файлов стандартных форматов .stl, .dxf, .txt;
- симплификации (уменьшение объема) файлов сканирования

10.2. Запуск программы

После запуска программа проверяет наличие USB-кабеля подключения блока синхронизации. Если устройство найдено, проверяется наличие лицензии, её корректность и включается лазерный датчик. Появившееся рабочее окно (рис. 8) свидетельствует о нормальной работе системы.

Рисунок 8

Окно содержит несколько областей:

- "А" область настроек параметров сканирования;
- "В" область формирования файлов;
- "С" область управления и настроек;
- "D" область состояния;
- "Е" область отображения сканируемого объекта.

10.3. Настройки

10.3.1. Настройка датчика

Датчик необходимо установить таким образом, чтобы сканируемый объект находился в области рабочего диапазона датчика. Пример установки датчика с базовым расстоянием 140 мм и диапазоном 100 мм показан на рис. 9. Для проверки правильности установки необходимо нажать кнопку **"Тест сканера"** (область **"С"** рабочего окна программы) и проконтролировать показания датчика ("текущее значение" в области **"D**"). Для плоскости стола, на котором размещен объект, показание датчика должно быть не многим менее 100 мм.

10.3.2. Настройка параметров лазерного датчика

Для изменения настроек лазерного датчика вызвать окно настроек, нажав кнопку "Настройки" (Область "С"). Вид окна показан на рисунке. В окне "Настройки датчика" отображаются:

1) неизменяемая служебная информация лазерного датчика: установленный внутренний делитель; тип устройства; серийный номер, рабочий диапазон и базовое расстояние; тип синхронизации.

2) два поля настроек фильтров, реализованных непосредственно в лазерном датчике. Первый фильтр – скользящее среднее. Максимальное допустимое значение ширины фильтра – 128. Второй фильтр – время задержки результата, с шагом 5 мс. (см. описание на лазерный датчик Серии РФ603:

www.riftek.com/resource/download/rf603_riftek.pdf)

После изменения настроек для их сохранения нажать кнопку "ОК".

10.3.3. Наст	ройка п	рограммн	ых фильтров
--------------	---------	----------	-------------

Для изменения настроек программных фильтров вызвать окно настроек, нажав кнопку "Настройки" и перейдя на вкладку "Настройки программы", установить требуемую ширину медианного фильтра и сглаживающего фильтра (гауссово ядро), разрешить либо запретить отображение модели. Для сохранения настроек нажать клавишу **ОК**.

Выключатель **"Отображение модели"** предназначен для разрешения/запрещения отображения модели. Эта функция используется в случаях нехватки ОЗУ.

Выключатель "Использовать бинокулярный датчик" предназначен для использования бинокулярного датчика РФ603В, поле "Ширина фильтра" предназначено для установки значения медианного фильтра, который обрабатывает изображение, полученное с бинокулярного датчика.

Выключатель "Использовать круговое сканирование" предназначен для использования системы сканирования на станке с вращающейся осью.

10.3.4. Настройка параметров сканирования

Перед началом сканирования необходимо в области **"А"** задать размер поля сканирования (Х - ширина, Y – длина поля), шаг дискретизации по Х и Y, диапазон высот сканируемого объекта (Z минимум и Z максимум) и выбрать тип станка, к которому подключен сканер. После настройки параметров программа рассчитывает допустимую скорость сканирования и отображает ее в окне параметров

стройки		6
Настройки датчика	Настройки программы	
– Инфо датчика (то	лько чтение)	
Делитель:	1	
Тип устройства:	60	
Серийный номер:	3929	
Базовое расст.:	140	
Диапазон:	100	
Тип синхро:	Триггер	
- Количество усред	няемых значений 4	
Время задержки	результата	
5 мс х	8	
	OK	

Настройки датчика	Настройки программ	ы
🔽 Медианный фи	льтр	
Ширина фильтра :	21	
🔽 Сглаживающий	і фильтр	
Коэффициент:	9 💌	
🔽 Отображение м	юдели	
Использовать (бинокулярный датчик	
Ширина фильтра :	20 .	
☑ Использовать н	круговое сканирование	í.
🗸 Использовать н	круговое сканирование	

10.4. Формирование файла сканирования для ЧПУ

Для формирования файла сканирования для системы ЧПУ станка выполнить настройки параметров сканирования по п. <u>10.3.4.</u>, нажать кнопку **"Сформировать файл для ЧПУ"** в поле **"В"** рабочего окна программы и указать место на ПК, куда записать файл управления. Выходной текстовый файл содержит управляющие G-коды для правильного движения станка.

10.5. Сканирование объекта

Для выполнения сканирования необходимо:

• управляющей программой для ЧПУ открыть файл, сформированный программой "Ashera" по п. <u>10.4;</u>

• установить систему перемещения станка в точку, от которой необходимо начинать сканирование;

• нажать кнопку "Начать сеанс" в области "С" рабочего окна программы;

запустить станок на выполнение программы.

Время выполнения задания зависит от размера области сканирования, скорости и шага, с которым передвигается каретка по осям X и Y.

После того как станок выполнил всю заданную программу, необходимо отключить режим сканирования, отжав кнопку "Начать сеанс".

10.6. Формирование файла результата

Результат сканирования отображается в области **"Е"**. Управлять объектом в данной области можно с помощью мыши:

- перемещение мыши с нажатой левой кнопкой - поворот объекта;

- перемещение мыши с нажатой правой кнопкой перемещение объекта;
- скроллинг мышью приближение или удаление объекта (масштабирование).

Для получения файла результата достаточно нажать кнопку "Сформировать файл результата" и в появившемся окне выбрать тип файла (STL/DXF/TXT), ввести имя файла, выбрать папку для сохранения и нажать "Сохранить".

Примечание: при работе на 64-х разрядном ПК перед сохранение файла программа предлагает выполнить симплификацию (уменьшение размера STL-файла), что актуально при сканировании крупных объектов, либо сканировании с мелким шагом.

(Source file
		Target file
Delete s	iource after /er source	

В появившемся окне ввести процент уменьшения файла и сохранить его.

Для внесения изменений (шаг по X или Y, длины или ширины области) в уже отсканированную область, необходимо внести изменения и нажать кнопку "Пересчитать область". Для возврата модели к исходному виду (если были применены фильтры и настроены пределы по Z) достаточно отключить фильтры и нажать кнопку "Пересчитать область".

Сохранить і	как		?
Папка: 🚺	3_STL	•	- 🗈 📸 📰 -
지 1_1.stl 지 2_1.stl 아 b1.stl 아 b2.stl 아 b3.stl 아 clin.stl	었 cube.stl ਨੇ cv2.stl ਨੇ cv5.stl ਨੇ flower.stl ਨੇ flower.stl	ogirl_good.stl 아m.stl 아nice_det.stl 아p.stl 아r1.stl 아r4.stl	ROZAN.stl
Имя файла:	[Сохранить
Тип файла:	STL-файл		• Отмена
	- STL-файл TXT-файл DXE-файл		

11. Сканирование тел вращения

Для сканирования с использованием вращающейся оси используется тот же принцип что и при сканировании 3D объектов на плоскости. Разница лишь в том, что одна из осей используется в качестве поворотной.

Существует 2 сценария сканирования: 1) (спиральный) поворотная ось является осью X и сканирование происходит по окружности, затем датчик смещается по оси Y над заготовкой на заданный шаг и сканирование повторяется по окружности; 2) поворотная ось является координатой Y и сканирование происходит по всей длине заготовки, т.е. сканируется заготовка вдоль по координате X, затем заготовка поворачивается на необходимый шаг и

процесс повторяется.

Важно знать длину окружности оси вращения (L на рисунке) чтобы задать в программе ширину области сканирования.

Пример: Необходимо отсканировать резную ножку стула. Длина окружности 200 мм, длинна ножки 700мм, необходимый шаг сканирования 0.2мм, используется спиральный метод сканирования. Датчик 140/100, стандартный.

			_
	Scanning area (m	m)	
	× (Width):	200.0000	-
	Y (Height):	700.0000	-
	Step bu X	0.2000	-
	Step by A.	0.2000	
	Step by Y:	0.2000	Ξ
	Minimum Z:	0.0000	÷
	Maximum Z:	100.0000	÷
	Device type	Your stepper	-
	A Speed of	an not be higher that	an
	indicate	d:	_
	(mm/min)	1731	
	Genera	ate file for CNC	
			-
	Gener	rate result file	
	- Lontrol and setting	gs	
	Start session	Stop session	1
	Ter	st scanner	
			_
	9	Settings	
	Devel	e dete es eien	
		culate region	_
	Status		
	Current value :	0.0 mm	
	Points by X :	0	
	Lines count :	0	
atus : Idle, STL:~181.870 MB, DXF:~230.173 MB, TXT:~84.872 MB, Scan time: 9 hours 26 minutes		Clos	se

Тогда настройки выглядят так:

Settings 🛛 🛛	
Laser settings Program settings Median filter Filter width : 19 Smoothing filter Coefficient : 11 Display mode! Use dual view sensor Filter width: 0 Use round scan	
ОК	Пример результата сканирования тела вращения

После сканирования получаем плоскую, развернутую 3d модель. Затем эту плоскую модель отдаем в производство в том же режиме, что и сканирование.

12. Примеры работы фильтра

Рисунок 10

На рисунке 10 представлен результат сканирования без программной фильтрации. Пики на изображении обусловлены влиянием вертикальных стенок на объекте.

На рисунке 11 показано изображение объекта, к которому применён "Медианный фильтр" (см. п. <u>10.3.3.</u>) с шириной 9. Как видно из рисунка, пики исчезли.

Рисунок 11

Существенного уменьшения зашумленности изображения можно достичь, применяя программное сглаживание, см. п. <u>10.3.3.</u>

13. Пример обозначения при заказе

RF071 - Dx - Ox - Cx - Bx - Rx

Элемент	Описание	Варианты	Примечание
RF071	Общее название устройства	-	
Dx	Выбор типа датчика	D0 - Стандартный датчик РФ603; D1 – Бинокулярный датчик РФ603В.	
Ox	Наличие блока оптической развязки	 О0 – Без блока оптической развязки (<i>только для станков Beaver 9А, 12А, 12АV, 18А, 24А, 26А</i>); О1 – С блоком оптической развязки. 	
Сх	Тип поставляемо- го кабеля	С0 – Без кабелей; С1 – КАБЕЛЬ-002-4; С2 – КАБЕЛЬ-003-26AVST; С3 – КАБЕЛЬ-004-6; С4 – КАБЕЛЬ-005-3; С5 – КАБЕЛЬ-006-3; С6 – КАБЕЛЬ-007-3; С7 – КАБЕЛЬ-008-5 25AVLT8; С8 – КАБЕЛЬ-009-15.	
Bx	Базовое расстоя- ние лазерного- датчика	Варианты описаны в документации на датчик http://riftek.com/resource/download/rf603_riftek.pdf Пример: B140 (базовое расстояние – 140 мм)	
Rx	Базовое расстоя-	Варианты описаны в документации на датчик	

н	ие лазеного дат- чика	http://riftek.com/resource/download/rf603_riftek.pdf	
		Пример: R100 (диапазон – 100 мм)	

Таблица выбора кабеля для соответствующего станка:

Станок	Тип кабеля	Необходимость блока оптиче- ской развязки
Beaver 9A, 12A, 12AV, 18A, 24A, 26A	КАБЕЛЬ-009-15	Нет
Beaver 24AVST	КАБЕЛЬ-002-4	Да
Beaver 25AVLT8	КАБЕЛЬ-008-5 25AVLT8	Да
Beaver 26AVLT8, Beaver 26AVST	КАБЕЛЬ-003-26AVST	Да
BigZee Pro, BigZee VG	КАБЕЛЬ-002-4	Да
MS-24/1	КАБЕЛЬ-002-4	Да
ATS760	КАБЕЛЬ-007-3	Да
Rigid A64	КАБЕЛЬ-006-3	Да
HEIZ CNC-Technik High-Z / S-series	КАБЕЛЬ-004-6	Да
Jinan N-1224	КАБЕЛЬ-002-4	Да
Artisman S-series	КАБЕЛЬ-002-4	Да
PureLogic PLC 330	КАБЕЛЬ-005-3	Да
Stepdrive-R4-Opto	КАБЕЛЬ-007-3	Да

Пример: RF071 – D1 – O1 – C2 – B140 – R100 – Система "Штрих-2" для станка Beaver - 26AVST8 с бинокулярным датчиком РФ603B-140/100 (базовое расстояние 140 мм, рабочий диапазон 10мм)

14. Системные требования

Для стабильной работы ПО "Ashera" необходим ПК с конфигурацией не хуже следующей:

Процессор:	не ниже Intel Pentium 4 2.0GHz (желательно x64)
ОЗУ:	не менее 1024 МБ (рекомендовано 4096МБ)
Дисковое пространство : не менее 20 Гб, обязательно файловая система NFTS	
Видеокарта ATI/NVidia и не менее 256Мбайт видеопамяти	
Операционная система Windows 2000/ Windows XP	
Прочее обязательное наличие USB 2 и Ethernet (при использо	
	РФ603В)

15. Гарантия

Гарантийный срок эксплуатации системы "Штрих-2" - 24 месяца со дня ввода в эксплуатацию, гарантийный срок хранения - 12 месяцев

16. Устранение проблем

Проблема	Причина	Устранение	
Программа «Ashera» выдаёт	1. Не установлены USB	1. Переустановите драйвера с оригиналь-	
ошибку: «Ошибка: Сканер не	драйвера.	ного компакт диска.	
найден»	2. Не подключен кабель	Проверьте подключение кабеля USB.	
	USB.		
Программа «Ashera» выдаёт	1. Не подключен датчик к	1. Проверьте подключение датчика к блоку	
ошибку: «Ошибка: Сканер не	блоку синхронизации.	синхронизации.	
отвечает»	2. Не подключен блок пита-	2. Проверьте подключение блока питания к	
	ния (+5V) к блоку синхрони-	блоку синхронизации.	
	зации.		
Программа «Ashera» выдаёт	1. Нет сигналов синхрони-	1. Необходимо с помощью осциллографа убе-	
ошибку: «Ошибка! Файл дан-	зации со станком	дится в наличии импульсов синхронизации от	
ных пустой»		станка (если есть блок оптической развязки –	
		то через блок оптической развязки). Возможно,	
		не подключено питание на блок оптической	
		развязки (если он используется).	
Программа «Ashera» выдаёт	1. Проблема с сигналами	1. С помощью осциллографа проверить нали-	
ошибку: «Ошибочный файл	синхронизации (STEP/DIR) чие сигналов STEP/DIR.		
данных»	идущими от станка (через	от станка (через	
	блок оптической развязки,		
	если он есть).		

17. Руководство по подключению

17.1. Общие положения

Перед подключением:

- Ознакомиться со схемотехникой станка.
- Ознакомиться с описанием системы 3D сканирования, принципом работы и вариантами подключения.
- Выбрать необходимый тип подключения к станку согласно схемотехнике станка.

Для этого необходимо разобраться: 1) как управляется система перемещения станка; 2) какие двигатели используются для передвижения шпинделя по осям; 3) (если используются шаговые драйверы) ознакомиться с описанием на шаговые драйверы (описания можно скачать с сайта производителя).

• Настроить параметры в программе для работы со стандартным либо бинокулярным датчиком.

Важно: Заземлить станину станка и шкаф, в котором стоят драйверы двигателей (объединить в одну землю). Если шпиндель не заземлён – также объединить в общую землю.

- Подключить систему 3D сканирования к станку (подключается только к Х координате) и проверить работоспособность.
- Внимание: При подключении проверьте состоянии галочки "Использовать бинокулярный датчик" в настройках программы Ashera (Настройки>Настройки программы). Если вы используете стандартный датчик – то уберите галочку, если бинокулярный – поставьте.

17.2. Входные цепи блоков синхронизации и опто-развязки

К компьютеру

Рисунок 12 Входные цепи блока синхронизации

17.3. Подключение к системам с шаговыми двигателями

17.3.1. Поключение к дайверам Leadshine M542/YAKO YKB2608 и аналогичным

Рисунок 14 Драйвер ҮАКО

Рисунок 15 Драйвер Leadshine

Перед началом работы с данными драйверами ознакомьтесь с их руководством по эксплуатации, которое можно скачать с сайта производителя.

Исходя из диаграммы работы ("Sequence Chart of Control Signals" Leadshine стр.8 или "Input signal timing diagram" YAKO стр.1), необходимо использовать способ подключения к станку с прямым управлением шаговым приводом, см. <u>8.1.1.</u>, и переключатели в блоке оптической развязки выставить по следующей схеме:

SW2

Рисунок 16 Положение переключателей блока оптической развязки для шаговых драйверов Leadshine M542/YAKO YKB2608 и аналогичных

Возможны два способа подключения: с использованием блока оптической развязки и без него.

Первый способ (с блоком оптической развязки):

- найти землю в станке, относительно которой работают сигналы PUL+/PUL-, DIR+/DIR- (DR, PU). Её клемма находится, как правило, на источнике питания либо на отдельной плате с пометкой "COM".
- подключить эту землю к входу AGND блока оптической развязки.
- подключить сигналы от драйвера координаты Х:
 - PUL- (PU) к входу xSTEP+ блока оптической развязки; DIR- (DR) к входу xDIR+ блока оптической развязки.

Важно: Если земля для AGND будет выбрана неверно, то работать система не будет. Программа выдаст ошибку: Ошибка! Файл данных пустой либо Ошибка! Проверьте скорость измерения.

Проверяйте также уровни сигналов, к которым вы подключаете блок оптической развязки. Если уровень будет выше +7V блок оптической развязки выйдет из строя.

Рисунок 17 Вариант подключения системы со стандартным датчиком

Рисунок 18 Вариант подключения системы с бинокулярным датчиком Второй способ (без использования блока оптической развязки):

Такое подключение возможно только в том случае, если для управления станком используется система с PCI-платой и программой NCStudio. (Для каждой новой модели станка с данными характеристиками надо проверять работоспособен данный вариант или нет). Подключение производится к драйверу координаты Х.

Для подключения использовать кабель с кодом «КАБЕЛЬ-001-15» (кабель с 15-контактным разъёмом):

Красный провод необходимо подключить к PUL+ (для Leadshine) или "+" (Pulse Signal input +, для YAKO) (шагового драйвера). Синий провод необходимо подключить к PUL- или PU (шагового драйвера). Белый провод необходимо подключить к DIR- или DR (шагового драйвера). Коричневый провод не используется.

Рисунок 19 Вариант подключения системы со стандартным датчиком

Рисунок 20 Вариант подключения системы с бинокулярным датчиком

17.3.2. Подключение к системам с серводвигателями

Перед началом работы с сервоусилителями ознакомьтесь с их руководством по эксплуатации, которое можно скачать с сайта производителя

Необходимо убедиться, что сервоусилители работают в режиме приёма команд по дифференциальному интерфейсу (в тексте руководства на сервоусилителя иногда пишут RS422), что можно посмотреть в настройках параметров сервоусилителя. Если действительно используется дифференциальный интерфейс (PULS1/PULS2, SIGN1/SIGN2) или (F+/F-, R+/R-), то данная глава подходит для настройки. Если же в настройках установлен режим приёма данных STEP/DIR, то необходимо вернуться к главе 3 и согласно руководству на сервоусилитель подключить сигналы к блоку оптической развязки с последующей настройкой переключателей.

Рисунок 21 Сервоусилитель и серводвигатель Panasonic серии Minas A4

Рисунок 22 Сервоусилитель и серводвигатель Mitsubishi Electric

Необходимо использовать вариант подключения к станкам с импульсными дифференциальными сигналами энкодера, (RS422), см.п.<u>8.1.4.</u> В блоке оптической развязки выставить переключатели по следующей схеме:

Рисунок 23 Положение переключателей блока оптической развязки в режиме"Подключение к станкам с импульсными дифференциальными сигналами энкодера, (RS422)"

Для подключения:

- найти землю, относительно которой работают сигналы PULS1/PULS2, SIGN1/SIGN2 или F+/F-, R+/R-. Информацию об этом можно найти в руководстве на сервоусилитель. Земляной контакт находится, как правило, рядом с основными сигналами и возможно помечен "COM".
- подключить эту землю к входу AGND блока оптической развязки.
- подключить сигналы от драйвера координаты Х:

PULS1 или F+ к входу xSTEP+ блока оптической развязки.

PULS2 или F- к входу хSTEP- блока оптической развязки.

SIGN1 или R+ к входу xDIR+ блока оптической развязки.

SIGN2 или R- к входу xDIR- блока оптической развязки.

Схема подключения системы показана на рис. 17 или 18 в зависимости от типа датчика.

Важно: Если земля для AGND будет выбрана неверно, то работать система не будет. Программа выдаст ошибку: Ошибка! Файл данных пустой либо Ошибка! Проверьте скорость измерения.

17.3.3. Подключение к системам, управляемым от LPT-порта (Mach3)

Для подключения системы 3D сканирования к станку, управляемому Mach3, необходимо заказать специальный LPT-кабель, длячего при заказе необходимо дополнительно сообщить 2 параметра:

- 1) номер контакта Step координаты X;
- 2) номер контакта Dir координаты X;

Для поиска номеров контактов необходимо в Mach3 зайти в меню Config->Port & Pins->Motor Outputs и посмотреть номера Step Pin# и Dir Pin# в строке X Axis.

Рисунок 24 Окно настроек порта управления станком

Подключение:

- использовать "Подключение к станку с прямым управлением шаговым приводом", см. п.<u>8.1.1.</u>
- переключатели в блоке оптической развязки выставить по схеме, показанной на рисунке 6.

Далее необходимо подключить сигналы:

- синий провод кабеля к входу xSTEP+ блока оптической развязки;
- белый провод кабеля к входу xDIR+ блока оптической развязки.
- коричневый провод кабеля к AGND блока оптической развязки.

Схема подключения системы показана на рис. 17 или 18 в зависимости от типа датчика, схема подключения к LPT-порту – на рис.25.

18. Примеры сканирования

Рисунок 25 Порядок соединения при подключении системы сканирования к LPT порту

18.1. Сравнение стандартного и бинокулярного датчиков

Исходный объект

Сканирование стандартным датчиком (без финальной фильтрации)

Сканирование бинокулярным датчиком (без финальной фильтрации)

19. Схемы кабелей

КАБЕЛЬ-001-15. Стандарт для всех кроме Beaver 9А/12А/18А/24А/26А

Кабель-002-4

L = 1 m, 8ми жильный экранированный кабель

Кабель-003-4AVST (Beaver 26AVST)

L = 1 m, 8ми жильный экранированный кабель

КАБЕЛЬ-005-3 (PureLogic PLC330)

8-ми жильный экранированный кабель

Разъем WIECON 8513S/5W (компания Wieland Electric GmbH). Уровень сигнала 3.3 В.

Если смотреть на торец платы и на разъем, то слева направо: Номера контактов Функция 1 Не задействован 2 STEP+ 3 STEP-4 Не задействован

КАБЕЛЬ-006-3 (Rigid A64)

GND

5

L = 1 m, 8ми жильный экранированный кабель

КАБЕЛЬ-008-5 25AVLT8 (25AVLT8)

кабель ~1м

КАБЕЛЬ-009-15

КАБЕЛЬ-010-4

20. Исправления и добавления

Дата	Версия	Описание
25 октября 2009	2.0	Исходный документ
1 февраля 2010	2.1	Исправлены диаграммы и положения переключателей.
		Переработана структура документа.
		Добавлены динамические характеристики.
01 сентября 2010	2.2	Добавлены: разделы лазерной безопасности и электро-
		магнитной совместимости, описание бинокулярного датчи-
		ка и его подключение к системе. Изменена структура зака-
		за системы. Добавлена процедура симплификации фай-
		лов больших размеров. Добавлена возможность установки
		системы на станки с вращающейся осью. Добавлена ин-
		дикация состояния блока синхронизации.
08 ноября 2010	2.2.	Исправлена схема подключения бинокулярного датчика
		Исправлена таблица комплектности поставки
27 декабря 2010	2.3	Добавлены: описание режима сканирования тел враще-
		ния; руководство по подключению, схемы кабелей
01 октября 2011	2.4	Добавлено описание кабеля для подключения у блоку
		синхронизации